Math Homework \#2

1. The function $f(x)$ graphed below has Fourier series $f(x)=\sum_{k>1} \frac{2(-1)^{n+1}}{n} \sin (n x)$.

The function $g(x)$ is 2π-periodic and given by $g(x)=(x-\pi)^{2}$ for $0 \leq x \leq 2 \pi$.

(a) Express the function g in terms of f by scaling, horizontal shift and integration.
(b) Use your answer from part (a) to get the Fourier coefficients of g from the Fourier series for f given above.
2. For each of the following functions, explain whether the Fourier series converges uniformly, pointwise, or in $L^{2}[0,2 \pi]$ (the series could converge w.r.t. more than one mode, or perhaps none of them). What property of the function allows you to deduce this?
(a) $f(x)=\sin (1 / x), \quad 0<x \leq 2 \pi$
(b) $g(x)=x^{-1 / 2}, \quad 0<x \leq 2 \pi$
(c) $h(x)=|x-\pi|, \quad 0<x<2 \pi$
3. For the following function, determine all x-values nearby which the Fourier series converges pointwise, but not uniformly. For each of these, compute the overshoot of the series.

4. let $g(x)$ be defined as in problem 1. What does the smoothness and decay of Fourier coefficients theorem from class tell us about the Fourier coefficient of g ?
5. Define a discrete random variable X by

$$
P(X=k)= \begin{cases}C k^{2} & \text { if } k \in\{1,2,3,4\} \\ 0 & \text { else }\end{cases}
$$

for some constant C.
(a) Calculate the value of C
(b) Calculate the mean and variance of X.
6. Suppose that the number of burglaries in a certain neighborhood is on average 4.5 per month. Let X be the number of burglaries there in some month. Explain why it is reasonable to model X with a Poisson random variable. What is the probability that $X>10$?
7. Calculate the mean and unbiased sample variance of the following sample

$$
\{1,5,3,12,-3,-3,-8\}
$$

